1 Introduction

Self-expanding Nitinol stents are increasingly popular in treating arterial occlusions, especially peripheral arterial disease. However, long-term patency of a stented vessel remains a challenge due to tissue ingrowth through the mesh structure of metal stents. The mechanism of arterial reocclusion is not yet fully understood. It is speculated that many factors, such as excessive stretch of the arterial wall, stent underexpansion, incomplete stent apposition (ISA), dimension and tortuosity of the artery contribute to the occurrence of reocclusion [1–3]. Evaluation of the mechanics of stent deployment and its interactions with diseased lesion will provide a fundamental understanding of stent dynamics and mechanical changes in the vessel wall.

Finite element method (FEM) has proven to be a very efficient and effective tool for the study of balloon-expandable stents, such as stent deployment and stent–artery interactions [4–9]. The interaction between self-expanding stents and arteries has undergone far less investigation using FEM. Moreover, most computational studies available in the literature focus on idealized straight vessels. Kleinstreuer et al. [10] simulated two Nitinol stent grafts to treat the abdominal aortic aneurysm in a straight vessel. Migliavacca et al. [11] compared stainless steel and Nitinol stents deployed into a straight coronary artery with a simplified cylindrical plaque. Several studies deployed a Nitinol stent into an anatomically accurate artery, however, plaque was not taken into account [12,13]. Wu et al. [14] simulated the delivery and release of Nitinol stent in a curved carotid artery; however, an idealized cylindrical plaque, corresponding to a 33% stenosis, was considered, which is usually not clinically significant for stent implantation. The effects of the stent deployment technique are also lacking in the documented finite element models. In addition, there is growing clinical evidence that self-expanding stents extend the duration of patency after treating the stenosed vessel, particularly when compared with balloon-mounted stents [15]. Therefore, better modeling of the deployment of the Nitinol stent and its interaction with curved stenosed artery will improve predictions of the stent performance and the design of a new generation of stents. The aim of this study is to systematically determine the behavior of a PROTEŒSTM GPSTM self-expanding stent (ev3 Inc., Plymouth, MN, USA) in a curved artery. The detailed interaction between stent, plaque and artery, the influence of stent deployment orientation and stent length on the level of the injury are presented and discussed.

2 Material and Methods

2.1 Geometry. A curved artery with 50% stenosis, based on the corresponding clinical study [16], was considered in this work (Fig. 1). The reference lumen dimensions are 9 mm in diameter, 1 mm in thickness, and 0.05 mm⁻¹ in curvature [17]. The arc central angle between two ends of artery is 90 deg, which produces an arc length of 31.4 mm at the central line of artery. An asymmetric plaque which produces eccentric lumen [18] was attached onto the inner surface of artery, and the arc length at inner surface of

Fig. 1 Sectional view of the sheath-restrained Nitinol stent in a curved artery
plaque is around 16 mm. The PROTÉGÉ™ GPS™ self-expanding Nitinol stent was constrained by a sheath and delivered to the lesion site (Fig. 2). There are 16 units along the circumferential direction and nine units along the axial direction in the configuration of the stent, which led to a nominal diameter of 10 mm, length of 20 mm, and strut thickness of 0.22 mm.

2.2 Material Properties. The material properties of both the artery and plaque were described using a hyperelastic isotropic constitutive model. Uniaxial tension tests were performed on both axial and circumferential strips of human aorta obtained from a commercial 10 mm CryoValve® aortic root (CryoLife Inc., Kennesaw, GA, USA). A third order polynomial strain energy density function is used to fit the test data as,

\[U = \sum_{I=1}^{3} C_{ij} (I_1 - 3)^i (I_2 - 3)^j \]

where \(C_{ij} \) are material coefficients determined from the experimental data, while \(I_1 \) and \(I_2 \) are the first and second invariants of the Cauchy-Green tensor, defined as \(I_1 = \lambda_1^2 + \lambda_2^2 + \lambda_3^2 \) and \(I_2 = \lambda_1^4 + \lambda_2^4 + \lambda_3^4 \), where \(\lambda_i \) are the principal stretches.

The coefficient of determination \(R^2 \) is used to measure how well the least squares equation predicts the experiential data. The higher the \(R^2 \), the more reliable the predictions obtained from the fitted model. The calculated \(R^2 \) is 0.925 for a reduced third order polynomial material model; while it is 0.753 for a reduced second order polynomial model fitting. Figure 3 clearly shows a better fit for the reduced third order polynomial model, which was used in this work. The obtained nonzero material coefficients are \(C_{10} = 0.0104673 \) MPa, \(C_{20} = 0.0194098 \) MPa, and \(C_{30} = 0.0109830 \) MPa. The material properties of plaque were adopted from the documented literatures [11], where a third order polynomial strain energy density function, with nonzero coefficients \(C_{10} = 0.04 \) MPa, \(C_{02} = 0.003 \) MPa, and \(C_{03} = 0.02976 \) MPa, was used.

The GPS™ stent is made of Nitinol material, which exhibits superelasticity and is associated with the stress induced phase transformation between the austenite and martensite phases. When loaded such that the stent is cramped into the sheath, the Nitinol material transforms from austenite to martensite. The transformation is initiated from stress state \(\sigma_{EL}^m \) and completed by the stress value \(\sigma_{EL}^e \) for the complete transformation. The reverse phase transformation will start as the loading is reduced to loading \(\sigma_{EL}^s \), such as when the sheath is removed. The original austenite phase will be totally recovered when the stress is further reduced to loading \(\sigma_{EL}^t \). The material parameters for the superelastic behavior of Nitinol [19], listed in the Table 1, were implemented in the ABAQUS 6.10 (Dassault Systèmes Simulia Corp., Providence, RI, USA) user material subroutine (VUMAT). Figure 4 has demonstrated the Nitinol material behavior obtained from the ABAQUS model.

2.3 Modeling. The self-expanding Nitinol stent was first cramped into the sheath, a rigid thin shell with a length of 22 mm. After the stent reached the targeted lesion site, a ramping velocity of 4000 mm/s was applied to remove the sheath along the axial direction. Thus the Nitinol stent was released and subsequently expanded to open the stenosed lumen. A finite-sliding, general contact formulation was adopted for the stent-tissue interactions. A friction coefficient of 0.05 was prescribed among all contact surfaces [20]. Artery and plaque were meshed with 17,784 and 8816 reduced eight-node brick elements (C3D8R), respectively. The GPS™ stent was discretized into 7248 two-node linear beam elements (B31), which accounts for large axial strains as well as transverse shear strains. The sheath is discretized with 988 reduced four-node shell elements (S4R).

![Fig. 2 PROTEGE™ GPS™ self-expanding Nitinol stent partially deployed from the sheath and its microscopic image](image)

![Fig. 3 The stress-strain relationship for artery](image)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_A)</td>
<td>Austenite elasticity</td>
<td>46,728 MPa</td>
</tr>
<tr>
<td>(\nu_A)</td>
<td>Austenite Poisson’s ratio</td>
<td>0.33</td>
</tr>
<tr>
<td>(E_M)</td>
<td>Martensite elasticity</td>
<td>25,199 MPa</td>
</tr>
<tr>
<td>(\nu_M)</td>
<td>Martensite Poisson’s ratio</td>
<td>0.33</td>
</tr>
<tr>
<td>(\sigma_{EL}^s)</td>
<td>Start of transformation loading</td>
<td>358.2 MPa</td>
</tr>
<tr>
<td>(\sigma_{EL}^e)</td>
<td>End of transformation loading</td>
<td>437.8 MPa</td>
</tr>
<tr>
<td>(\sigma_{EL}^i)</td>
<td>Start of transformation unloading</td>
<td>124.25 MPa</td>
</tr>
<tr>
<td>(\sigma_{EL}^t)</td>
<td>End of transformation unloading</td>
<td>17.75 MPa</td>
</tr>
<tr>
<td>(\sigma_{EL}^v)</td>
<td>Start of transformation stress (loading in compression)</td>
<td>537.3 MPa</td>
</tr>
<tr>
<td>(\nu_E)</td>
<td>Volumetric transformation strain</td>
<td>0.0426</td>
</tr>
</tbody>
</table>

Table 1 Material parameters of Nitinol
3 Results

The GPS™ Nitinol stent restored patency in a curved vessel with 50% stenosis, as shown in Fig. 5. After stenting, the stent length is 21.77 mm, compared with the original length of 20 mm. The diameter of the stent is 7.72 mm at the center of the plaque, 10.01 mm at the proximal end of the stent, and 10.04 mm at the distal end of the stent, respectively. This indicates a possible stent underexpansion, evaluated as the ratio of minimum stent area to the mean proximal and distal reference lumen area [21]. Underexpansion occurs if this ratio is less than 80% [21]. In this work, the minimum lumen cross-sectional area enclosed by the stent is calculated as 50.22 mm² while the proximal and distal reference lumen area are 91.78 mm² and 87.38 mm², respectively. The corresponding ratio is 56.06%, which indicates the presence of underexpansion. Underexpansion usually leads to noncontact regions between the stent and artery wall, also referred to as incomplete stent apposition (ISA) [22]. The stent strut is not fully flush against the wall, and hence a lack of contact between the strut and the underlying arterial wall. An ISA area of 160.55 mm² is obtained in our model.

Acute lumen gain, quantified as the increase in lumen diameter, is a positive indicator of stent performance. The minimum lumen diameter increased from the initial 4.5 mm to 7.61 mm, which corresponded to a 15.44% residual stenosis after stenting, as illustrated in Fig. 6 and Table 2. The variable D refers to the inner diameter of the artery, and \(t_{\text{max}}, t_{\text{min}} \) refer to the limit thickness of the plaque at one cross-section. An acute lumen gain is calculated as 3.11 mm due to plaque compressions and arterial wall stretching. It is clear that the stented artery is stretched by 23.44%, and reaches to an inner diameter of 11.11 mm at the site of narrowest occlusion. The plaque, however, was compressed by 0.63 mm (\(\Delta t_{\text{max}} \)) and 0.37 mm (\(\Delta t_{\text{min}} \)), respectively, which indicates a 21.00% compression in the thick side of the plaque and 24.67% compression in the thin side of the plaque. Similar compressions are also observed at both plaque ends with around 22% arterial stretch. In our case, arterial wall stretch contributes to approximately 68% of the lumen gain at the site of narrowest occlusion; in addition to plaque compression and redistribution.

Acute lumen gains are compromised by tissue prolapse, estimated as the maximal protrusion of the arterial tissue between stent struts. The tissue prolapse, defined as the relative radial distance between the protruded tissue and its surrounding strut, is 0.44 mm at maximum in the central cross-sections, which is larger than the stent strut thickness of 0.22 mm, indicating the lumen loss due to the draping of the tissue within the units of the stent. This may affect the hemodynamics and induce late stent thrombosis and in-stent restenosis [23].

Deployment of stent induced stress concentrations on the arterial wall, which contribute to the occurrence of in-stent restenosis. Figure 7(a) demonstrates that stent implantation straightened the curved vessel wall and that the stent ends poked into the artery, this phenomenon is referred to as the hinge effect. The effect of catheter tilting is estimated by inclining the crimped stent 5 deg...
The maximum principal stress in the arterial wall increased from 0.063 MPa to 0.074 MPa after stent tilting. Meanwhile, the stent-induced distal hinge effect becomes more prominent. The maximum principal nominal strain at the distal end was elevated from 33.99% to 38.69%, which was a 13.83% increase due to the 5 deg orientation variation. It is natural to observe that the hinge effect was alleviated at the proximal end of the stent, where the maximum principal nominal strain at the hinge points decreased from 36.22% to 31.28%.

The influence of stent length is investigated by adding two or four more units onto the original stent, which has nine units alone axial direction. The stent with nine units along the axial direction was referred to as “Stent U9” and the ones with 11 or 13 units as “Stent U11” or “Stent U13,” respectively. The lumen gain after stenting of “Stent U11” and “Stent U13” were 3.40 mm and 3.44 mm, respectively, comparing with 3.11 mm for the original “Stent U9.” The maximum contact pressure between stent and underlying tissue for “Stent U9,” “Stent U11,” and “Stent U13” were 0.27 MPa, 0.31 MPa, and 0.45 MPa, respectively. The increased stent length also led to severe arterial stress concentrations, as shown in Fig. 8. The arterial volume where principal stress exceeds 0.06 MPa, the average blood pressure induced arterial stress level, were 0.01%, 2.54%, and 11.95% after deployment of “Stent U9,” “Stent U11,” and “Stent U13,” respectively.

4 Discussion

In this study, the deployment of a self-expanding Nitinol stent in a curved artery is simulated to get a better fundamental understanding of the interaction between the stent and the stenosed artery, as well as its clinical implications. Both artery and plaque underwent considerable geometry change immediately after the deployment of Nitinol stent. This agrees with the documented clinical observations, which showed that arterial wall stretching and plaque compression are the two main contributors to lumen gain after stenting [24]. It is also clear that the thin side of plaque was compressed more than the thick side, which caused higher arterial stress contacting the thin side of plaque (Fig. 6 and Table 2). This may be explained by the lower resistance at the thin side of the plaque. A stenting study in rabbits showed a positive correlation between the extent of plaque or medial compression and the observed neointimal hyperplasia [25]. This implied that the varied medial compressions might lead to nonuniform thickening of the intima of the stented artery. Results show that Nitinol stents exhibit underexpansion immediately after its deployment. This is partially attributed to the lower stiffness of Nitinol as a material (47 GPa), compared with the conventional stainless steel material with a stiffness of 190 GPa. It is speculated that the underexpansion of bare metal stents is associated with thrombosis and the occurrence of restenosis [21,26–28]. Post balloon angioplasty after stent deployment is suggested by some researchers to reduce the underexpansion [29]. Other groups, however, have suggested that Nitinol stents will continue expanding to listed nominal diameter up to nine months after the deployment; thus acute underexpansion may be corrected by the stent itself due to its shape memory properties [30–32]. Late expansion of Nitinol stents may compensate the lumen loss caused by neointimal hyperplasia; however, it is at the expense of arterial overstretching [31,32].

This work has shown that underexpansion may lead to increased hinge effect at both ends of the stent, especially when the catheter is slightly tilted. The influence of tilted catheter can be extended to various arterial curvatures, but it is pronounced in arteries with larger curvatures. Considering the reality of catheter

| Table 2 Stent-induced variations in the geometry of stenosed artery |
|--------------------|-------------|-------------|-------------|
| | t\textsubscript{max} (mm) | t\textsubscript{min} (mm) | D (mm) |
| Plaque center | Before stenting | 3.00 | 1.50 | 9.00 |
| (narrowest occlusion)| After stenting | 2.37 | 1.13 | 11.11 |
| Plaque ends | Before stenting | 1.57 | 0.94 | 9.32 |
| | After stenting (Proximal) | 1.40 | 0.63 | 11.40 |
| | After stenting (Distal) | 1.45 | 0.66 | 11.33 |

![Fig. 7 Arterial stress distributions after stent deployment. (a) catheter along the center of the lumen; (b) tilted catheter with 5 deg angle counterclockwise.](http://biomechanical.asmedigitalcollection.asme.org/)

![Fig. 8 The influence of stent length on arterial wall stress. (a) “Stent U9,” (b) “Stent U11,” and (c) “Stent U13.”](http://biomechanical.asmedigitalcollection.asme.org/)
position in a curved artery, the initial stent deployment orientation is rotated for 5 deg angle. The maximum principal nominal strain at the distal end increased by 13.83%, which indicates a more severe hinge effect. The hinge effect, due to the nonuniform asymmetric plaque, stent oversizing, and underexpansion, will cause higher local stresses and stress gradients on the artery. This may trigger neointimal proliferation at those locations, and contribute to the occurrence of restenosis [33]. Meanwhile, the peak stress gradient may lead to edge dissection, which requires further intervention [34,35]. Considering the smaller contact load at the stent ends, soft strut links at the ends of stents are suggested to alleviate these hinge effects [36].

The tortuosity of the stenosed artery was modified by the implanted stent. This is clearly demonstrated by the stented curved vessel. The nonuniform plaque profile caused noncontact regions between the stent and arterial wall. This implies that drug-eluting stents may sacrifice the drug effect on the artery, and blood stagnation may form in these areas which may initiate thrombosis. It is speculated that more units with shorter struts will reduce the ISA area and increase the compliance of the stents used in tortuous artery [14].

The effect of stent length was evaluated in terms of contact pressure between stent and underlining tissue and the potential injury to the arterial wall. It is clear that a longer self-expanding stent enhances the contact pressure between stent and underlining tissue, which may reduce the stent migration [37]. The instant lumen gain was also improved with a longer stent that protrudes wide into the normal portions of the artery. However, the longer stent induced more severe hinge effect and much larger stress concentrations at the ends of the stents, which may increase the possibility of neointimal hyperplasia.

In this study, the baseline stenosis of 50% was adopted from the clinical studies of PROTEGÉ™ GPT™ carotid stent [16]. For the stenting treatment of severe stenosis, i.e., 70% or greater, a balloon predilation was generally needed [30], which was not considered in this work. The material properties of artery and plaque are defined as homogeneous, isotropic, and hyperelastic, though they have been known to be nonhomogeneous, anisotropic, and viscoelastic [38,39]. Hyperelastic constitutive equations were extensively used to describe the nonlinear stress-strain relationship for the elastic state of arterial tissue; however, the inelastic phenomena such as plastic or fracture-related deformation could not be addressed by the hyperelastic material model itself. Effects of blood flow and more realistic material models were not considered in this work. The superelasticity of Nitinol stents is considered to accommodate large strains in this work; however, its shape memory properties related to temperature changes were not considered in this work. The superelasticity of Nitinol stents is considered to accommodate large strains in this work; however, its shape memory properties related to temperature changes were not considered in this work.

Acknowledgment

The authors are grateful for funding from the National Science Foundation under Grant Nos. 0926880 and 0811250.

References

Journal of Biomechanical Engineering

Downloaded From: http://biomechanical.asmedigitalcollection.asme.org on 04/24/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

